
Abstract. It is outlined how the utilization of a basis of
projected spin eigenfunctions can lead to increased
computational e�ciency in the evaluation of matrix
elements and density matrices in spin-coupled valence
bond calculations.
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1 Introduction

Recently there has been a signi®cant revival of interest in
valence bond theory, with particular emphasis on
approaches that involve full optimization of the orbitals.
Modern valence bond theory in its spin-coupled form [1]
has provided important insights into a wide range of
chemical systems. The active electrons in spin-coupled
calculations are described in terms of a product of
N singly occupied nonorthogonal orbitals ul; l � 1;
2; . . . ;N :

WN
SM �

Xf N
S

k�1
CSkÂ�u1u2 . . . uNHN

SM ;k� �1�

in which HN
SM ;k is an N -electron spin eigenfunction of Ŝ

2

and Ŝz, with eigenvalues S�S � 1��h2 and M�h, respective-
ly, and f N

S is the dimension of the spin space:

f N
S �

�2S � 1�N !

�1=2N � S � 1�!�1=2N ÿ S�! : �2�

Â is the antisymmetrizer. The orbitals ul are expanded
in a basis set of atomic functions

ul �
Xm

p�1
clpxp ; �3�

and all the orbital expansion coe�cients �clp� and the
spin-coupling coe�cients �CSk� are optimized simulta-
neously using a second-order procedure that involves the
second derivatives of the energy with respect to the
variational parameters (all of which are real).

There are, of course, many useful ways in which the
spin eigenfunctions HN

SM ;k in Eq. (1) can be chosen [2],
and a highly e�cient code is available for transforming
spin-coupling coe�cients between di�erent bases [3].
The present paper is concerned with the particular
computational advantages associated with choosing a
basis of projected spin eigenfunctions. The consider-
ations discussed here apply equally well to a variety of
valence bond approaches.

The structure of this paper is as follows. In Sect. 2 we
introduce the projected spin eigenfunctions and express
them in a form suited to implementation in the spin-
coupled program ``sk1'' [4]. Utilizing some useful char-
acteristics of the projected functions, a very compact
form of the spin-coupled matrix elements is found in
Sect. 3, and we outline the procedure used for evaluating
the energy. We indicate in Sect. 4 how the use of pro-
jected spin eigenfunctions leads to signi®cant computa-
tional improvements in the evaluation of the density
matrices required for optimizing the energy. Finally, we
present our conclusions in Sect. 5.

2 Projected spin eigenfunctions

For a system of N electrons with total spin quantum
number S and its projection M � S, the ®rst projected
spin eigenfunction HN

SS;1 may be de®ned according to
[2, 5, 6]:

HN
SS;1 � KN

S X̂
�k�
r h1 �4�

in which h1 is the primitive spin string

h1 � a�1�a�2� . . . a�na�b�na � 1� . . . b�na � nb� �5�
and KN

S is a normalization constant. X̂
�k�
r is the character

projection operator for the irreducible representation
�k� � �na; nb� � �1=2N � S; 1=2N ÿ S� of the symmetric
group SN :Correspondence to: B. Friis-Jensen
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X̂
�k�
r �

f N
S

N !

X
P2SN

X �k�r �P �P̂
r
; �6�

where the r labels indicate that the various operators act

only on spin variables. Kramer [7] has shown that X̂
�k�
r is

equivalent to LoÈ wdin's projection operator [8].
The complete linearly independent set of projected

spin eigenfunctions is generated from the ®rst function
according to

HN
SS;k � P̂

r
k HN

SS;1; k � 1; 2; . . . ; f N
S : �7�

Assuming that the standard Young tableaux are ordered
according to last letter sequence (see Ref. [9]), P̂ k is
de®ned as the permutation which converts the ®rst
tableaux T1 into the kth tableaux Tk

Tk � P̂ kT1 : �8�
In the following, these permutations will be called
standard Young tableaux permutations. The spin eigen-
functions HN

SS;k, which are nonorthogonal, are each
normalized to unity provided

KN
S

� �2� 1=2N � S � 1

2S � 1
; �9�

as was proved in Ref. [6].
The ®rst projected spin eigenfunction may be re-

written in the form

HN
SS;1 �

XNd

I�1
bI1hI ; �10�

in which there are Nd � N !=�na!nb!� unique primitive
spin functions hI with the given values of na and nb. An
explicit expression for the bI1 coe�cients is given in Ref.
[6]. However, the strategy used here for generating the
character projected spin eigenfunctions relies on the
observation that the ®rst genealogical spin eigenfunction
coincides with the ®rst projected spin function [2], so
that the values of bI1 in Eq. (10) are already known in
the spin-coupled codes. The kth projected spin eigen-
function,

HN
SS;k �

XNd

I�1
bIkhI ; �11�

is obtained by permuting the ®rst spin eigenfunction
according to Eq. (7):

HN
SS;k �

XNd

I�1
bI1 P̂

r
khI : �12�

This means that all the character projected spin eigen-
functions for the given values N and S contain identical
expansion coe�cients, which are simply permuted ac-
cording to the standard Young tableaux permutations.

3 Matrix elements

The expectation value of the energy for the spin-coupled
wave function in Eq. (1) is independent of M and takes
the form

E �

Pf N
S

k;`
CSkCS`Hk`

Pf N
S

k;`
CSkCS`Dk`

�13�

in which

Hk` � hÂ�u1 . . . uNHN
SM ;k�jĤ jÂ�u1 . . . uNHN

SM ;`�i �14�
and

Dk` � hÂ�u1 . . . uNHN
SM ;k�jÂ�u1 . . . uNHN

SM ;`�i ; �15�
where Ĥ is the usual spin-independent clamped-nucleus
Hamiltonian, with the inclusion of an e�ective core
potential for any inactive electrons. Using Eq. (11), We
may rewrite a spin-coupled wave function in the form

WN
SS �

Xf N
S

k�1

XNd

I�1
CSkbIkUI �16�

in which UI denotes the Slater determinant

UI � Â�u1u2 . . . uNhI� ; �17�
so that, for example,

Hk` �
XNd

I ;J

bIkbJ`hUI jĤ jUJ i ; �18�

The particular advantage of choosing projected spin
functions is that it becomes possible to reduce the
number of summations over Nd terms. Note that the left-
right symmetry in the hU1jĤ jUJ i means that there are
1=2Nd � �Nd � 1� unique elements in Eq. (18).

We write a matrix element of an arbitrary symmetric
spin-independent operator Ô in the form

Ok` � KN
S

� �2
hÂ�u1 . . . uN P̂

r
k X̂
�k�
r h1�jÔj Â�u1 . . . uN P̂ `X̂

�k�
r h1�i �19�

and recognize that since X̂
�k�
r belongs to the centrum of

the group algebra of SN [10] it must commute with any
permutation of SN and with Ô. It follows that the
character operator in the ket can be replaced by the
Hermitian conjugate operator in the bra. The character
operator is self conjugate and idempotent, so that we
end up with an unchanged expression in the bra whereas
in the ket we now have the Slater determinant corre-
sponding to the `th standard Young tableau permuta-
tion:

Ok` � KN
S

� �2
hÂ�u1 . . . uN P̂

r
k X̂
�k�
r h1�jÔj Â�u1 . . . uN P̂

r
` h1�i �20�

Denoting the determinant in the ket as U`, we have

Ok` � KN
S

XNd

I

bIkhUI jÔjU`i ; �21�

which now involves only one summation over Nd terms
(compare Eq. 18). Here there is only left-right symmetry
when UI is a Slater determinant corresponding to a
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standard Young tableau permutation and so the number
of unique matrix elements is Nd � f N

S ÿ 1=2f N
S �f N

S ÿ 1�.
This symmetry is not exploited in our code, which
evaluates all Nd � f N

S elements.
We may get a very crude estimate of the likely im-

provement in performance of a full calculation by as-
suming that the computer time depends only on the total
numbers of matrix elements between determinants.
Comparison of Eqs. (18) and (21) suggests a ratio of
1=2�Nd � 1�=f N

S . If, at the other extreme, the computer
time depends on the number of summations over Nd
terms, we might expect an improvement in performance

as large as Nd . As indicated later, the actual speed-ups
are closer to the lower prediction.

In order to obtain explicit expressions for the usual
overlap, one-electron and two-electron integrals it is
more convenient to write the Slater determinant UI in
Eq. (17) in an alternative way. Firstly, we note that the
spin product hI can be written as

hI � R̂
r
I h1 �22�

where RI is a permutation of SN . Utilizing the operator
identity (see for example Ref. [5])

ÂR̂
r
I � eRI ÂR̂

ÿ1;r
I �23�

where the label r indicates that the inverse acts on spatial
variables, we rewrite UI as

UI � eRI Â�R̂
ÿ1;r
I u1u2 . . . uN h1�

� eRI Â�uI1uI2 . . . uIN
h1� : �24�

An analogous expression can be found for the Slater
determinant U`

U` � eP` Â�P̂
ÿ1;r
` u1u2 . . . uNh1�

� eP` Â�u`1u`2 . . . u`N
h1� : �25�

Integrating over spin variables, as in Ref. [5], we obtain
for the overlap integral:

hUI jU`i � eRI eP`M
I`;naMI`;nb �26�

where

MI`;na �
huI1 ju`1i huI1 ju`2i � � � huI1 ju`na

i
huI2 ju`1i huI2 ju`2i � � � huI2 ju`na

i
: : :

huIna
ju`1i huIna

ju`2i � � � huIna
ju`na
i

��������
�������� �27�

with an analogous de®nition for MI`;nb . Similarly, the
one-electron matrix element becomes

hUI jĤ1jU`i � eRI eP`

� MI`;nb
Xna

l;m�1
MI`;naÿ1�Ilj`m�huIl jĥju`mi

(

� MI`;na
XN

l;m�n�1a

MI`;nbÿ1�Ilj`m�huIl jĥju`mi
9=; �28�

where

For the two-electron matrix element we ®nd:

hUI jĤ2jU`i � eRI eP`

� MI`;nb
Xna

l<m

Xna

r<s

MI`;naÿ2�IlImj`r`s��huIluIm jĝju`ru`si
(

ÿhuIluIm jĝju`su`ri��MI`;na
XN

na<l<m

XN

na<r<s

MI`;nbÿ2�IlImj`r`s�

� �huIluIm jĝju`ru`si ÿ huIluIm jĝju`su`ri�

�
Xna

l;m�1

XN

r;s�na�1
MI`;naÿ1�Ilj`m�MI`;nbÿ1 �Irj`s�

� huIlu`r jĝjuImu`si
)
: �30�

These various expansions have been used to write a new
routine for evaluating the total energy (Eq. 13) when
using projected spin eigenfunctions. We ®nd that the
new procedure is signi®cantly faster than our existing
approach [4].

In practice, we ®rst run a loop over all U`, recording
indexes for the strings which arise from the deletion of
up two as or bs (as is required for indexing mirrors) and
the identities of which particular orbitals have been de-
leted (as is required for accessing integrals in the orbital
basis). The main code then consists of an outer loop over
all UI : for the given UI , we ®rst store in temporary arrays
the indexes for strings which arise from the deletion of
up to two as or bs and the identities of which particular
orbitals have been deleted; a fast inner loop over U` is
then performed to assemble the required hUI jÔjU`i from
precomputed minors and from integrals in the spin-
coupled orbital basis. The various Ok` matrix elements
are then obtained in a separate stage, using Eq. (21).

MI`;naÿ1�Ilj`m� � �ÿ1�l�m

huI1 ju`1i � � � huI1 ju`mÿ1i huI1 ju`m�1i � � � huI1 ju`na
i

: : : :

huIlÿ1 ju`1i � � � huIlÿ1 ju`mÿ1i huIlÿ1 ju`m�1i � � � huIlÿ1 ju`na
i

huIl�1 ju`1i � � � huIl�1 ju`mÿ1i huIl�1 ju`m�1i � � � huIl�1 ju`na
i

: : : :

huIna
ju`1i � � � huIna

ju`mÿ1i huIna
ju`m�1i � � � huIna

ju`na
i

��������������

��������������
: �29�
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A key consideration in the e�ciency of the new
routine is the availability of fast graphical indexing
routines for the various orbital strings and for the min-
ors [4, 11], as in our existing code.

4 Density matrices

Computation of the second derivatives of the energy
with respect to the variational parameters requires
density matrices up to fourth order. For larger values
of N , the generation of these density matrices accounts
for a very high proportion of the total computer time.
An e�cient strategy for evaluating all of the required
density matrix elements is described in detail in Ref. [4],
in which summations over �Nd�2 terms are signi®cantly
reduced. Because of the dimensions of the various
density matrices,1 it is important to be able to generate
them in a prearranged order that avoids excessive
storage [4].

It is straightforward, if a little tedious, to generalize
Eq. (30) for an arbitrary symmetric spin-independent
four-electron operator, and then to recognize the ele-
ments of the fourth-order density matrices as the mul-
tipliers of the relevant four-electron integrals. The basic
problem with adopting such an approach is that it does
not generate the elements of the density matrices in a
convenient order, as in our existing procedures. Instead,
we recognize (cf. Eqs. 18 and 21) that we may make the
replacementXNd

J

bJ`jUJ i ! KN
S jU`i �31�

in our existing strategy. The required changes to Scheme
I in Ref. [4] are surprisingly modest. In essence, the
contribution from a particular determinant in the ket is
not considered unless that determinant corresponds to a
standard Young tableau permutation. Of course, the
numerical factors in front of the surviving terms must be
modi®ed according to the recipe shown in Eq. (31).

We indicated earlier that one very crude estimate of
the expected improvement in performance is provided by
the ratio 1=2�Nd � 1�=f N

S . The actual speed-ups achieved

in the evaluation of the fourth-order density matrix are
shown in Table 1. Greater improvements in performance
are observed with increasing N , and for low values of S.
The symmetry properties of the various expressions are
such that S � 0 is no longer a special case for which
some terms need not be computed, as in our existing
strategy [4], so that the speed-up can be less than
1=2�Nd � 1�=f N

S for zero total spin.

5 Conclusions

In general, projected spin eigenfunctions contain the
longest possible expansion in primitive spin products
and they o�er no straightforward physical interpreta-
tion. Their advantage is of the computational kind and
arises from the idempotency of the projection operator.
In essence, one sum over the full spin space in the matrix
element evaluation may be replaced by one primitive
spin product (cf. Eq. 31, in which the spatial product is
also included). The consequence of this is that spin-
coupled calculations performed with a projected spin
basis, using the strategy outlined here, are signi®cantly
faster than the corresponding calculations using the
schemes described in Ref. [4]. More importantly, most is
gained (see Table 1) for larger values of N and low S, for
which the calculations are most time consuming.
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Table 1. Relative performance of the evaluation of fourth-order
density matrices when using projected spin functions

N S f N
S Nd 1=2 Nd � 1� �=f N

S Actual speed-up

9 1
2

42 126 1.51 1.64
9 112 48 84 0.89 1.17
9 212 27 36 0.69 1.05
10 0 42 252 3.01 2.73
10 1 90 210 1.17 1.66
10 2 75 120 0.81 1.31
10 3 35 45 0.66 1.04
12 0 132 924 3.50 3.49

1A transcription error occurred in the last line of Table 2 in Ref. [4].
The correct entries are ~N�Dn� � 2946240; ~N�Dn

k� � 388903680 and
~N�Dn

k`� � �2:59� 1010
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